
cool-django-auth-ldap Documentation
Release 2.0.0

Peter Sagerson

Nov 28, 2019

Contents

1 Installation 3

2 Usage 5

3 Authentication 7
3.1 Server Config . 7
3.2 Search/Bind . 7
3.3 Direct Bind . 8
3.4 Customizing Authentication . 8
3.5 Notes . 9

4 User objects 11
4.1 Populating Users . 11
4.2 Easy Attributes . 12
4.3 Updating Users . 12
4.4 Direct Attribute Access . 12

5 Permissions 15
5.1 Using Groups Directly . 15
5.2 Group Mirroring . 15
5.3 Customizing group mapping . 16
5.4 Non-LDAP Users . 16

6 Multiple LDAP Configs 17

7 Logging 19

8 Performance 21

9 Reference 23
9.1 Settings . 23
9.2 Module Properties . 27
9.3 Configuration . 27
9.4 Backend . 29
9.5 Models . 30

10 Contributing 31
10.1 Types of Contributions . 31

i

10.2 Get Started! . 32
10.3 Pull Request Guidelines . 33

11 Credits 35
11.1 Development Lead . 35
11.2 Contributors . 35

12 License 37

Python Module Index 39

Index 41

ii

cool-django-auth-ldap Documentation, Release 2.0.0

This is a Django authentication backend that authenticates against an LDAP service. Configuration can be as simple
as a single distinguished name template, but there are many rich configuration options for working with users, groups,
and permissions.

This version is supported on Python 3.5+; and Django 1.11+. It requires python-ldap >= 3.1.

Contents 1

https://pypi.org/project/python-ldap/

cool-django-auth-ldap Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Installation

Install the package with pip:

$ pip install cool-django-auth-ldap

It requires ‘python-ldap‘_ >= 3.0. You’ll need the ‘OpenLDAP‘_ libraries and headers available on your system.

3

cool-django-auth-ldap Documentation, Release 2.0.0

4 Chapter 1. Installation

CHAPTER 2

Usage

To use the auth backend in a Django project, add 'cool_django_auth_ldap.backend.LDAPBackend'
to AUTHENTICATION_BACKENDS`m add ``cool_django_auth_ldap` to INSTALLED_APPS and run
migrations.

AUTHENTICATION_BACKENDS = ["cool_django_auth_ldap.backend.LDAPBackend"]

INSTALLED_APPS = (
...
"cool_django_auth_ldap.apps.AppConfig"
...

)

LDAPBackend should work with custom user models, but it does assume that a database is present.

Note: LDAPBackend does not inherit from ModelBackend. It is possible to use LDAPBackend exclusively by
configuring it to draw group membership from the LDAP server. However, if you would like to assign permissions to
individual users or add users to groups within Django, you’ll need to have both backends installed:

AUTHENTICATION_BACKENDS = [
"cool_django_auth_ldap.backend.LDAPBackend",
"django.contrib.auth.backends.ModelBackend",

]

5

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend

cool-django-auth-ldap Documentation, Release 2.0.0

6 Chapter 2. Usage

CHAPTER 3

Authentication

3.1 Server Config

If your LDAP server isn’t running locally on the default port, you’ll want to start by setting
AUTH_LDAP_SERVER_URI to point to your server. The value of this setting can be anything that your LDAP
library supports. For instance, openldap may allow you to give a comma- or space-separated list of URIs to try in
sequence.

AUTH_LDAP_SERVER_URI = "ldap://ldap.example.com"

If your server location is even more dynamic than this, you may provide a function (or any callable object) that returns
the URI. The callable is passed a single positional argument: request. You should assume that this will be called
on every request, so if it’s an expensive operation, some caching is in order.

from my_module import find_my_ldap_server

AUTH_LDAP_SERVER_URI = find_my_ldap_server

If you need to configure any python-ldap options, you can set AUTH_LDAP_GLOBAL_OPTIONS and/or
AUTH_LDAP_CONNECTION_OPTIONS. For example, disabling referrals is not uncommon:

import ldap

AUTH_LDAP_CONNECTION_OPTIONS = {ldap.OPT_REFERRALS: 0}

3.2 Search/Bind

Now that you can talk to your LDAP server, the next step is to authenticate a username and password. There are
two ways to do this, called search/bind and direct bind. The first one involves connecting to the LDAP server either
anonymously or with a fixed account and searching for the distinguished name of the authenticating user. Then we

7

cool-django-auth-ldap Documentation, Release 2.0.0

can attempt to bind again with the user’s password. The second method is to derive the user’s DN from his username
and attempt to bind as the user directly.

Because LDAP searches appear elsewhere in the configuration, the LDAPSearch class is provided to encapsulate
search information. In this case, the filter parameter should contain the placeholder %(user)s. A simple configura-
tion for the search/bind approach looks like this (some defaults included for completeness):

import ldap
from cool_django_auth_ldap.config import LDAPSearch

AUTH_LDAP_BIND_DN = ""
AUTH_LDAP_BIND_PASSWORD = ""
AUTH_LDAP_USER_SEARCH = LDAPSearch(

"ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"
)

This will perform an anonymous bind, search under "ou=users,dc=example,dc=com" for an object with a
uid matching the user’s name, and try to bind using that DN and the user’s password. The search must return exactly
one result or authentication will fail. If you can’t search anonymously, you can set AUTH_LDAP_BIND_DN to the
distinguished name of an authorized user and AUTH_LDAP_BIND_PASSWORD to the password.

3.2.1 Search Unions

If you need to search in more than one place for a user, you can use LDAPSearchUnion. This takes multiple
LDAPSearch objects and returns the union of the results. The precedence of the underlying searches is unspecified.

import ldap
from cool_django_auth_ldap.config import LDAPSearch, LDAPSearchUnion

AUTH_LDAP_USER_SEARCH = LDAPSearchUnion(
LDAPSearch("ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"),
LDAPSearch("ou=otherusers,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)

→˓"),
)

3.3 Direct Bind

To skip the search phase, set AUTH_LDAP_USER_DN_TEMPLATE to a template that will produce the authenticating
user’s DN directly. This template should have one placeholder, %(user)s. If the first example had used ldap.
SCOPE_ONELEVEL, the following would be a more straightforward (and efficient) equivalent:

AUTH_LDAP_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

3.4 Customizing Authentication

It is possible to further customize the authentication process by subclassing LDAPBackend and overriding
authenticate_ldap_user(). The first argument is the unauthenticated ldap_user, the second is the supplied
password. The intent is to give subclasses a simple pre- and post-authentication hook.

If a subclass decides to proceed with the authentication, it must call the inherited implementation. It may then return
either the authenticated user or None. The behavior of any other return value–such as substituting a different user
object–is undefined. User objects has more on managing Django user objects.

8 Chapter 3. Authentication

cool-django-auth-ldap Documentation, Release 2.0.0

Obviously, it is always safe to access ldap_user.dn before authenticating the user. Accessing
ldap_user.attrs and others should be safe unless you’re relying on special binding behavior, such as
AUTH_LDAP_BIND_AS_AUTHENTICATING_USER.

3.5 Notes

LDAP is fairly flexible when it comes to matching DNs. LDAPBackend makes an effort to accommodate this by
forcing usernames to lower case when creating Django users and trimming whitespace when authenticating.

Some LDAP servers are configured to allow users to bind without a password. As a precaution against false positives,
LDAPBackend will summarily reject any authentication attempt with an empty password. You can disable this
behavior by setting AUTH_LDAP_PERMIT_EMPTY_PASSWORD to True.

By default, all LDAP operations are performed with the AUTH_LDAP_BIND_DN and
AUTH_LDAP_BIND_PASSWORD credentials, not with the user’s. Otherwise, the LDAP connection would
be bound as the authenticating user during login requests and as the default credentials during other re-
quests, so you might see inconsistent LDAP attributes depending on the nature of the Django view. If you’re
willing to accept the inconsistency in order to retrieve attributes while bound as the authenticating user, see
AUTH_LDAP_BIND_AS_AUTHENTICATING_USER.

By default, LDAP connections are unencrypted and make no attempt to protect sensitive information, such as pass-
words. When communicating with an LDAP server on localhost or on a local network, this might be fine. If you need
a secure connection to the LDAP server, you can either use an ldaps:// URL or enable the StartTLS extension.
The latter is generally the preferred mechanism. To enable StartTLS, set AUTH_LDAP_START_TLS to True:

AUTH_LDAP_START_TLS = True

If LDAPBackend receives an LDAPError from python_ldap, it will normally swallow it and log a warn-
ing. If you’d like to perform any special handling for these exceptions, you can add a signal handler to
cool_django_auth_ldap.backend.ldap_error. The signal handler can handle the exception any way
you like, including re-raising it or any other exception.

3.5. Notes 9

https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPError

cool-django-auth-ldap Documentation, Release 2.0.0

10 Chapter 3. Authentication

CHAPTER 4

User objects

Authenticating against an external source is swell, but Django’s auth module is tightly bound to a user model. When
a user logs in, we have to create a model object to represent them in the database. Because the LDAP search is case-
insensitive, the default implementation also searches for existing Django users with an iexact query and new users
are created with lowercase usernames. See get_or_build_user() if you’d like to override this behavior. See
get_user_model() if you’d like to substitute a proxy model.

By default, lookups on existing users are done using the user model’s USERNAME_FIELD. To lookup by a different
field, use AUTH_LDAP_USER_QUERY_FIELD. When set, the username field is ignored.

When using the default for lookups, the only required field for a user is the username. The default User
model can be picky about the characters allowed in usernames, so LDAPBackend includes a pair of hooks,
ldap_to_django_username() and django_to_ldap_username(), to translate between LDAP user-
names and Django usernames. You may need this, for example, if your LDAP names have periods in them. You
can subclass LDAPBackend to implement these hooks; by default the username is not modified. User objects that
are authenticated by LDAPBackend will have an ldap_username attribute with the original (LDAP) username.
username (or get_username()) will, of course, be the Django username.

Note: Users created by LDAPBackend will have an unusable password set. This will only happen when the user
is created, so if you set a valid password in Django, the user will be able to log in through ModelBackend (if
configured) even if they are rejected by LDAP. This is not generally recommended, but could be useful as a fail-safe
for selected users in case the LDAP server is unavailable.

4.1 Populating Users

You can perform arbitrary population of your user models by adding listeners to the Django signal:
cool_django_auth_ldap.backend.populate_user. This signal is sent after the user object has been
constructed (but not necessarily saved) and any configured attribute mapping has been applied (see below). You can
use this to propagate information from the LDAP directory to the user object any way you like. If you need the user ob-
ject to exist in the database at this point, you can save it in your signal handler or override get_or_build_user().
In either case, the user instance will be saved automatically after the signal handlers are run.

11

https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.CustomUser.USERNAME_FIELD
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User.username
https://docs.djangoproject.com/en/stable/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser.get_username
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend
https://docs.djangoproject.com/en/stable/topics/signals/#module-django.dispatch

cool-django-auth-ldap Documentation, Release 2.0.0

If you need an attribute that isn’t included by default in the LDAP search results, see
AUTH_LDAP_USER_ATTRLIST.

4.2 Easy Attributes

If you just want to copy a few attribute values directly from the user’s LDAP directory entry to their Django user, the
setting, AUTH_LDAP_USER_ATTR_MAP, makes it easy. This is a dictionary that maps user model keys, respectively,
to (case-insensitive) LDAP attribute names:

AUTH_LDAP_USER_ATTR_MAP = {"first_name": "givenName", "last_name": "sn"}

Only string fields can be mapped to attributes. Boolean fields can be defined by group membership:

AUTH_LDAP_USER_FLAGS_BY_GROUP = {
"is_active": "cn=active,ou=groups,dc=example,dc=com",
"is_staff": (

LDAPGroupQuery("cn=staff,ou=groups,dc=example,dc=com")
| LDAPGroupQuery("cn=admin,ou=groups,dc=example,dc=com")

),
"is_superuser": "cn=superuser,ou=groups,dc=example,dc=com",

}

Values in this dictionary may be simple DNs (as strings), lists or tuples of DNs, or LDAPGroupQuery instances.
Lists are converted to queries joined by |.

Remember that if these settings don’t do quite what you want, you can always use the signals described in the previous
section to implement your own logic.

4.3 Updating Users

By default, all mapped user fields will be updated each time the user logs in. To disable this, set
AUTH_LDAP_ALWAYS_UPDATE_USER to False. If you need to populate a user outside of the authentica-
tion process—for example, to create associated model objects before the user logs in for the first time—you can
call cool_django_auth_ldap.backend.LDAPBackend.populate_user(). You’ll need an instance of
LDAPBackend, which you should feel free to create yourself. populate_user() returns the User or None if
the user could not be found in LDAP.

from cool_django_auth_ldap.backend import LDAPBackend

user = LDAPBackend().populate_user("alice")
if user is None:

raise Exception("No user named alice")

4.4 Direct Attribute Access

If you need to access multi-value attributes or there is some other reason that the above is inadequate, you can also
access the user’s raw LDAP attributes. user.ldap_user is an object with four public properties. The group
properties are, of course, only valid if groups are configured.

• dn: The user’s distinguished name.

12 Chapter 4. User objects

https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User

cool-django-auth-ldap Documentation, Release 2.0.0

• attrs: The user’s LDAP attributes as a dictionary of lists of string values. The dictionaries are modified to use
case-insensitive keys.

• group_dns: The set of groups that this user belongs to, as DNs.

• group_names: The set of groups that this user belongs to, as simple names. These are the names that will be
used if AUTH_LDAP_MIRROR_GROUPS is used.

Python-ldap returns all attribute values as utf8-encoded strings. For convenience, this module will try to decode all
values into Unicode strings. Any string that can not be successfully decoded will be left as-is; this may apply to binary
values such as Active Directory’s objectSid.

4.4. Direct Attribute Access 13

cool-django-auth-ldap Documentation, Release 2.0.0

14 Chapter 4. User objects

CHAPTER 5

Permissions

Groups are useful for more than just populating the user’s is_* fields. LDAPBackend would not be complete
without some way to turn a user’s LDAP group memberships into Django model permissions. In fact, there are two
ways to do this.

Ultimately, both mechanisms need some way to map LDAP groups to Django groups. Implementations of
LDAPGroupType will have an algorithm for deriving the Django group name from the LDAP group. Clients that
need to modify this behavior can subclass the LDAPGroupType class. All of the built-in implementations take a
name_attr argument to __init__, which specifies the LDAP attribute from which to take the Django group
name. By default, the cn attribute is used.

5.1 Using Groups Directly

The least invasive way to map group permissions is to set AUTH_LDAP_FIND_GROUP_PERMS to True.
LDAPBackend will then find all of the LDAP groups that a user belongs to, map them to Django groups, and
load the permissions for those groups. You will need to create the Django groups and associate permissions yourself,
generally through the admin interface.

To minimize traffic to the LDAP server, LDAPBackend can make use of Django’s cache framework to keep a copy of
a user’s LDAP group memberships. To enable this feature, set AUTH_LDAP_CACHE_TIMEOUT, which determines
the timeout of cache entries in seconds.

AUTH_LDAP_CACHE_TIMEOUT = 3600

5.2 Group Mirroring

The second way to turn LDAP group memberships into permissions is to mirror the groups themselves. This approach
has some important disadvantages and should be avoided if possible. For one thing, membership will only be updated
when the user authenticates, which may be especially inappropriate for sites with long session timeouts.

15

cool-django-auth-ldap Documentation, Release 2.0.0

If AUTH_LDAP_MIRROR_GROUPS is True, then every time a user logs in, LDAPBackend will update the database
with the user’s LDAP groups. Any group that doesn’t exist will be created and the user’s Django group membership
will be updated to exactly match their LDAP group membership. If the LDAP server has nested groups, the Django
database will end up with a flattened representation. For group mirroring to have any effect, you of course need
ModelBackend installed as an authentication backend.

By default, we assume that LDAP is the sole authority on group membership; if you remove a user from a group in
LDAP, they will be removed from the corresponding Django group the next time they log in. It is also possible to
have django-auth-ldap ignore some Django groups, presumably because they are managed manually or through some
other mechanism. If AUTH_LDAP_MIRROR_GROUPS is a list of group names, we will manage these groups and
no others. If AUTH_LDAP_MIRROR_GROUPS_EXCEPT is a list of group names, we will manage all groups except
those named; AUTH_LDAP_MIRROR_GROUPS is ignored in this case.

5.3 Customizing group mapping

By default LDAPBackend match django and LDAP groups by names. It has disadvantages when deploying into
different environments with different LDAP groups. You can configure which LDAP group corresponds to which
django group by specifying AUTH_LDAP_USE_GROUP_MAPPING = True.

After you added this setting you should fill table cool_django_auth_ldap_groupmapping with ids of django groups
and specify corresponding LDAP group names. After that LDAPBackend will match django groups correspondingly.

When using group mapping you can’t use Mirror Groups black and white lists. You can only
set AUTH_LDAP_MIRROR_GROUPS to True and table content will act as whitelist. Setting
AUTH_LDAP_MIRROR_GROUPS_EXCEPT or AUTH_LDAP_MIRROR_GROUPS to list of group names will
result in ImproperlyConfigured exception

5.4 Non-LDAP Users

LDAPBackend has one more feature pertaining to permissions, which is the ability to handle authorization for users
that it did not authenticate. For example, you might be using RemoteUserBackend to map externally authenticated
users to Django users. By setting AUTH_LDAP_AUTHORIZE_ALL_USERS, LDAPBackend will map these users
to LDAP users in the normal way in order to provide authorization information. Note that this does not work with
AUTH_LDAP_MIRROR_GROUPS; group mirroring is a feature of authentication, not authorization.

16 Chapter 5. Permissions

https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.backends.RemoteUserBackend

CHAPTER 6

Multiple LDAP Configs

You’ve probably noticed that all of the settings for this backend have the prefix AUTH_LDAP_. This is the default,
but it can be customized by subclasses of LDAPBackend. The main reason you would want to do this is to create
two backend subclasses that reference different collections of settings and thus operate independently. For example,
you might have two separate LDAP servers that you want to authenticate against. A short example should demonstrate
this:

mypackage.ldap

from cool_django_auth_ldap.backend import LDAPBackend

class LDAPBackend1(LDAPBackend):
settings_prefix = "AUTH_LDAP_1_"

class LDAPBackend2(LDAPBackend):
settings_prefix = "AUTH_LDAP_2_"

settings.py

AUTH_LDAP_1_SERVER_URI = "ldap://ldap1.example.com"
AUTH_LDAP_1_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

AUTH_LDAP_2_SERVER_URI = "ldap://ldap2.example.com"
AUTH_LDAP_2_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

AUTHENTICATION_BACKENDS = ("mypackage.ldap.LDAPBackend1", "mypackage.ldap.LDAPBackend2
→˓")

All of the usual rules apply: Django will attempt to authenticate a user with each backend in turn until one of them
succeeds. When a particular backend successfully authenticates a user, that user will be linked to the backend for the
duration of their session.

17

cool-django-auth-ldap Documentation, Release 2.0.0

Note: Due to its global nature, AUTH_LDAP_GLOBAL_OPTIONS ignores the settings prefix. Regardless of how
many backends are installed, this setting is referenced once by its default name at the time we load the ldap module.

18 Chapter 6. Multiple LDAP Configs

CHAPTER 7

Logging

LDAPBackend uses the standard Python logging module to log debug and warning messages to the logger named
'cool_django_auth_ldap'. If you need debug messages to help with configuration issues, you should add a
handler to this logger. Using Django’s LOGGING setting, you can add an entry to your config.

LOGGING = {
"version": 1,
"disable_existing_loggers": False,
"handlers": {"console": {"class": "logging.StreamHandler"}},
"loggers": {"cool_django_auth_ldap": {"level": "DEBUG", "handlers": ["console"]}},

}

19

https://docs.python.org/3/library/logging.html#module-logging
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-LOGGING

cool-django-auth-ldap Documentation, Release 2.0.0

20 Chapter 7. Logging

CHAPTER 8

Performance

LDAPBackend is carefully designed not to require a connection to the LDAP service for every request. Of course,
this depends heavily on how it is configured. If LDAP traffic or latency is a concern for your deployment, this section
has a few tips on minimizing it, in decreasing order of impact.

1. Cache groups. If AUTH_LDAP_FIND_GROUP_PERMS is True, the default behavior is to reload a user’s
group memberships on every request. This is the safest behavior, as any membership change takes effect imme-
diately, but it is expensive. If possible, set AUTH_LDAP_CACHE_TIMEOUT to remove most of this traffic.

2. Don’t access user.ldap_user.*. Except for ldap_user.dn, these properties are only cached on a per-
request basis. If you can propagate LDAP attributes to a User, they will only be updated at login. user.
ldap_user.attrs triggers an LDAP connection for every request in which it’s accessed.

3. Use simpler group types. Some grouping mechanisms are more expensive than others. This will often be
outside your control, but it’s important to note that the extra functionality of more complex group types like
NestedGroupOfNamesType is not free and will generally require a greater number and complexity of
LDAP queries.

4. Use direct binding. Binding with AUTH_LDAP_USER_DN_TEMPLATE is a little bit more efficient than re-
lying on AUTH_LDAP_USER_SEARCH . Specifically, it saves two LDAP operations (one bind and one search)
per login.

21

https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User

cool-django-auth-ldap Documentation, Release 2.0.0

22 Chapter 8. Performance

CHAPTER 9

Reference

9.1 Settings

9.1.1 AUTH_LDAP_ALWAYS_UPDATE_USER

Default: True

If True, the fields of a User object will be updated with the latest values from the LDAP directory every time the
user logs in. Otherwise the User object will only be populated when it is automatically created.

9.1.2 AUTH_LDAP_AUTHORIZE_ALL_USERS

Default: False

If True, LDAPBackend will be able furnish permissions for any Django user, regardless of which backend authen-
ticated it.

9.1.3 AUTH_LDAP_BIND_AS_AUTHENTICATING_USER

Default: False

If True, authentication will leave the LDAP connection bound as the authenticating user, rather than forcing it to
re-bind with the default credentials after authentication succeeds. This may be desirable if you do not have global
credentials that are able to access the user’s attributes. django-auth-ldap never stores the user’s password, so this only
applies to requests where the user is authenticated. Thus, the downside to this setting is that LDAP results may vary
based on whether the user was authenticated earlier in the Django view, which could be surprising to code not directly
concerned with authentication.

9.1.4 AUTH_LDAP_BIND_DN

Default: '' (Empty string)

23

https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User

cool-django-auth-ldap Documentation, Release 2.0.0

The distinguished name to use when binding to the LDAP server (with AUTH_LDAP_BIND_PASSWORD).
Use the empty string (the default) for an anonymous bind. To authenticate a user, we will bind with that
user’s DN and password, but for all other LDAP operations, we will be bound as the DN in this setting.
For example, if AUTH_LDAP_USER_DN_TEMPLATE is not set, we’ll use this to search for the user. If
AUTH_LDAP_FIND_GROUP_PERMS is True, we’ll also use it to determine group membership.

9.1.5 AUTH_LDAP_BIND_PASSWORD

Default: '' (Empty string)

The password to use with AUTH_LDAP_BIND_DN .

9.1.6 AUTH_LDAP_CACHE_TIMEOUT

Default: 0

The value determines the amount of time, in seconds, a user’s group memberships and distinguished name are cached.
The value 0, the default, disables caching entirely.

9.1.7 AUTH_LDAP_CONNECTION_OPTIONS

Default: {}

A dictionary of options to pass to each connection to the LDAP server via LDAPObject.set_option(). Keys
are ldap.OPT_* constants.

9.1.8 AUTH_LDAP_DENY_GROUP

Default: None

The distinguished name of a group; authentication will fail for any user that belongs to this group.

9.1.9 AUTH_LDAP_FIND_GROUP_PERMS

Default: False

If True, LDAPBackend will furnish group permissions based on the LDAP groups the authenticated user belongs
to. AUTH_LDAP_GROUP_SEARCH and AUTH_LDAP_GROUP_TYPE must also be set.

If AUTH_LDAP_USE_GROUP_MAPPING set to True. You can use table cool_django_auth_ldap_groupmapping to
specify mapping between django and LDAP groups. Otherwise name of django group equals to name of LDAP group.

9.1.10 AUTH_LDAP_GLOBAL_OPTIONS

Default: {}

A dictionary of options to pass to ldap.set_option(). Keys are ldap.OPT_* constants.

Note: Due to its global nature, this setting ignores the settings prefix. Regardless of how many backends are installed,
this setting is referenced once by its default name at the time we load the ldap module.

24 Chapter 9. Reference

https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPObject.set_option
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap-options
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.set_option
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap-options

cool-django-auth-ldap Documentation, Release 2.0.0

9.1.11 AUTH_LDAP_GROUP_SEARCH

Default: None

An LDAPSearch object that finds all LDAP groups that users might belong to. If your configuration makes any
references to LDAP groups, this and AUTH_LDAP_GROUP_TYPE must be set.

9.1.12 AUTH_LDAP_GROUP_TYPE

Default: None

An LDAPGroupType instance describing the type of group returned by AUTH_LDAP_GROUP_SEARCH .

9.1.13 AUTH_LDAP_MIRROR_GROUPS

Default: None

If True, LDAPBackend will mirror a user’s LDAP group membership in the Django database. Any time a user
authenticates, we will create all of their LDAP groups as Django groups and update their Django group membership
to exactly match their LDAP group membership. If the LDAP server has nested groups, the Django database will end
up with a flattened representation.

This can also be a list or other collection of group names, in which case we’ll only mirror those groups and leave the
rest alone. This is ignored if AUTH_LDAP_MIRROR_GROUPS_EXCEPT is set.

If AUTH_LDAP_USE_GROUP_MAPPING is set, AUTH_LDAP_MIRROR_GROUPS can only be set to boolean value.

9.1.14 AUTH_LDAP_MIRROR_GROUPS_EXCEPT

Default: None

If this is not None, it must be a list or other collection of group names. This will enable group mirroring, except that
we’ll never change the membership of the indicated groups. AUTH_LDAP_MIRROR_GROUPS is ignored in this case.

This setting can’t be used when AUTH_LDAP_USE_GROUP_MAPPING set to True.

9.1.15 AUTH_LDAP_PERMIT_EMPTY_PASSWORD

Default: False

If False (the default), authentication with an empty password will fail immediately, without any LDAP communi-
cation. This is a secure default, as some LDAP servers are configured to allow binds to succeed with no password,
perhaps at a reduced level of access. If you need to make use of this LDAP feature, you can change this setting to
True.

9.1.16 AUTH_LDAP_REQUIRE_GROUP

Default: None

The distinguished name of a group; authentication will fail for any user that does not belong to this group. This can
also be an LDAPGroupQuery instance.

9.1. Settings 25

cool-django-auth-ldap Documentation, Release 2.0.0

9.1.17 AUTH_LDAP_NO_NEW_USERS

Default: False

Prevent the creation of new users during authentication. Any users not already in the Django user database will not be
able to login.

9.1.18 AUTH_LDAP_SERVER_URI

Default: 'ldap://localhost'

The URI of the LDAP server. This can be any URI that is supported by your underlying LDAP libraries. Can also be
a callable that returns the URI. The callable is passed a single positional argument: request.

Changed in version 1.7.0: When AUTH_LDAP_SERVER_URI is set to a callable, it is now passed a positional
request argument. Support for no arguments will continue for backwards compatibility but will be removed in
a future version.

9.1.19 AUTH_LDAP_START_TLS

Default: False

If True, each connection to the LDAP server will call start_tls_s() to enable TLS encryption over the standard
LDAP port. There are a number of configuration options that can be given to AUTH_LDAP_GLOBAL_OPTIONS
that affect the TLS connection. For example, ldap.OPT_X_TLS_REQUIRE_CERT can be set to ldap.
OPT_X_TLS_NEVER to disable certificate verification, perhaps to allow self-signed certificates.

9.1.20 AUTH_LDAP_USE_GROUP_MAPPING

Default: False

Controls ability to set up mapping between django and ldap groups in table cool_django_auth_ldap_groupmapping

9.1.21 AUTH_LDAP_USER_QUERY_FIELD

Default: None

The field on the user model used to query the authenticating user in the database. If unset, uses the value
of USERNAME_FIELD of the model class. When set, the value used to query is obtained through the
AUTH_LDAP_USER_ATTR_MAP.

9.1.22 AUTH_LDAP_USER_ATTRLIST

Default: None

A list of attribute names to load for the authenticated user. Normally, you can ignore this and the LDAP server will
send back all of the attributes of the directory entry. One reason you might need to override this is to get operational
attributes, which are not normally included:

AUTH_LDAP_USER_ATTRLIST = ["*", "+"]

26 Chapter 9. Reference

https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPObject.start_tls_s
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.OPT_X_TLS_REQUIRE_CERT
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEVER
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEVER

cool-django-auth-ldap Documentation, Release 2.0.0

9.1.23 AUTH_LDAP_USER_ATTR_MAP

Default: {}

A mapping from User field names to LDAP attribute names. A users’s User object will be populated from his LDAP
attributes at login.

9.1.24 AUTH_LDAP_USER_DN_TEMPLATE

Default: None

A string template that describes any user’s distinguished name based on the username. This must contain the place-
holder %(user)s.

9.1.25 AUTH_LDAP_USER_FLAGS_BY_GROUP

Default: {}

A mapping from boolean User field names to distinguished names of LDAP groups. The corresponding field is set to
True or False according to whether the user is a member of the group.

Values may be strings for simple group membership tests or LDAPGroupQuery instances for more complex cases.

9.1.26 AUTH_LDAP_USER_SEARCH

Default: None

An LDAPSearch object that will locate a user in the directory. The filter parameter should contain the placeholder
%(user)s for the username. It must return exactly one result for authentication to succeed.

9.2 Module Properties

No module properties

9.3 Configuration

class cool_django_auth_ldap.config.LDAPSearch

__init__(base_dn, scope, filterstr=’(objectClass=*)’)

Parameters

• base_dn (str) – The distinguished name of the search base.

• scope (int) – One of ldap.SCOPE_*.

• filterstr (str) – An optional filter string (e.g. ‘(objectClass=person)’). In order to
be valid, filterstr must be enclosed in parentheses.

class cool_django_auth_ldap.config.LDAPSearchUnion

__init__(*searches)

9.2. Module Properties 27

https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

cool-django-auth-ldap Documentation, Release 2.0.0

Parameters searches (LDAPSearch) – Zero or more LDAPSearch objects. The result of
the overall search is the union (by DN) of the results of the underlying searches. The prece-
dence of the underlying results and the ordering of the final results are both undefined.

class cool_django_auth_ldap.config.LDAPGroupType
The base class for objects that will determine group membership for various LDAP grouping mechanisms.
Implementations are provided for common group types or you can write your own. See the source code for
subclassing notes.

__init__(name_attr=’cn’)
By default, LDAP groups will be mapped to Django groups by taking the first value of the cn attribute.
You can specify a different attribute with name_attr.

class cool_django_auth_ldap.config.PosixGroupType
A concrete subclass of LDAPGroupType that handles the posixGroup object class. This checks for both
primary group and group membership.

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.MemberDNGroupType
A concrete subclass of LDAPGroupType that handles grouping mechanisms wherein the group object contains
a list of its member DNs.

__init__(member_attr, name_attr=’cn’)

Parameters member_attr (str) – The attribute on the group object that contains a list of
member DNs. ‘member’ and ‘uniqueMember’ are common examples.

class cool_django_auth_ldap.config.NestedMemberDNGroupType
Similar to MemberDNGroupType, except this allows groups to contain other groups as members. Group
hierarchies will be traversed to determine membership.

__init__(member_attr, name_attr=’cn’)
As above.

class cool_django_auth_ldap.config.GroupOfNamesType
A concrete subclass of MemberDNGroupType that handles the groupOfNames object class. Equivalent to
MemberDNGroupType('member').

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.NestedGroupOfNamesType
A concrete subclass of NestedMemberDNGroupType that handles the groupOfNames object class.
Equivalent to NestedMemberDNGroupType('member').

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.GroupOfUniqueNamesType
A concrete subclass of MemberDNGroupType that handles the groupOfUniqueNames object class.
Equivalent to MemberDNGroupType('uniqueMember').

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.NestedGroupOfUniqueNamesType
A concrete subclass of NestedMemberDNGroupType that handles the groupOfUniqueNames object
class. Equivalent to NestedMemberDNGroupType('uniqueMember').

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.ActiveDirectoryGroupType
A concrete subclass of MemberDNGroupType that handles Active Directory groups. Equivalent to
MemberDNGroupType('member').

28 Chapter 9. Reference

https://docs.python.org/3/library/stdtypes.html#str

cool-django-auth-ldap Documentation, Release 2.0.0

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.NestedActiveDirectoryGroupType
A concrete subclass of NestedMemberDNGroupType that handles Active Directory groups. Equivalent to
NestedMemberDNGroupType('member').

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.OrganizationalRoleGroupType
A concrete subclass of MemberDNGroupType that handles the organizationalRole object class.
Equivalent to MemberDNGroupType('roleOccupant').

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.NestedOrganizationalRoleGroupType
A concrete subclass of NestedMemberDNGroupType that handles the organizationalRole object
class. Equivalent to NestedMemberDNGroupType('roleOccupant').

__init__(name_attr=’cn’)

class cool_django_auth_ldap.config.LDAPGroupQuery
Represents a compound query for group membership.

This can be used to construct an arbitrarily complex group membership query with AND, OR, and NOT logical
operators. Construct primitive queries with a group DN as the only argument. These queries can then be
combined with the &, |, and ~ operators.

This is used by certain settings, including AUTH_LDAP_REQUIRE_GROUP and
AUTH_LDAP_USER_FLAGS_BY_GROUP. An example is shown in limiting-access.

__init__(group_dn)

Parameters group_dn (str) – The distinguished name of a group to test for membership.

9.4 Backend

cool_django_auth_ldap.backend.populate_user
This is a Django signal that is sent when clients should perform additional customization of a User object. It is
sent after a user has been authenticated and the backend has finished populating it, and just before it is saved. The
client may take this opportunity to populate additional model fields, perhaps based on ldap_user.attrs.
This signal has two keyword arguments: user is the User object and ldap_user is the same as user.
ldap_user. The sender is the LDAPBackend class.

cool_django_auth_ldap.backend.ldap_error
This is a Django signal that is sent when we receive an ldap.LDAPError exception. The signal has three
keyword arguments:

• context: one of 'authenticate', 'get_group_permissions', or 'populate_user', in-
dicating which API was being called when the exception was caught.

• user: the Django user being processed (if available).

• exception: the LDAPError object itself.

The sender is the LDAPBackend class (or subclass).

class cool_django_auth_ldap.backend.LDAPBackend
LDAPBackend has one method that may be called directly and several that may be overridden in subclasses.

9.4. Backend 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/stable/ref/contrib/auth/#django.contrib.auth.models.User
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPError
https://python-ldap.readthedocs.io/en/latest/reference/ldap.html#ldap.LDAPError

cool-django-auth-ldap Documentation, Release 2.0.0

settings_prefix
A prefix for all of our Django settings. By default, this is 'AUTH_LDAP_', but subclasses can override
this. When different subclasses use different prefixes, they can both be installed and operate independently.

default_settings
A dictionary of default settings. This is empty in LDAPBackend, but subclasses can populate this with
values that will override the built-in defaults. Note that the keys should omit the 'AUTH_LDAP_' prefix.

populate_user(username)
Populates the Django user for the given LDAP username. This connects to the LDAP directory with
the default credentials and attempts to populate the indicated Django user as if they had just logged in.
AUTH_LDAP_ALWAYS_UPDATE_USER is ignored (assumed True).

get_user_model(self)
Returns the user model that get_or_build_user() will instantiate. By default, custom user models
will be respected. Subclasses would most likely override this in order to substitute a proxy model.

authenticate_ldap_user(self, ldap_user, password)
Given an LDAP user object and password, authenticates the user and returns a Django user object. See
Customizing Authentication.

get_or_build_user(self, username, ldap_user)
Given a username and an LDAP user object, this must return a valid Django user model instance. The
username argument has already been passed through ldap_to_django_username(). You can get
information about the LDAP user via ldap_user.dn and ldap_user.attrs. The return value must
be an (instance, created) two-tuple. The instance does not need to be saved.

The default implementation looks for the username with a case-insensitive query; if it’s not found,
the model returned by get_user_model() will be created with the lowercased username. New
users will not be saved to the database until after the cool_django_auth_ldap.backend.
populate_user signal has been sent.

A subclass may override this to associate LDAP users to Django users any way it likes.

ldap_to_django_username(username)
Returns a valid Django username based on the given LDAP username (which is what the user enters). By
default, username is returned unchanged. This can be overridden by subclasses.

django_to_ldap_username(username)
The inverse of ldap_to_django_username(). If this is not symmetrical to
ldap_to_django_username(), the behavior is undefined.

9.5 Models

class cool_django_auth_ldap.models.GroupMapping
Represents a model for storing mapping between django and LDAP groups.

Model has two fields:

• Foreign key to auth_group table

• CharField to store LDAP group name

30 Chapter 9. Reference

https://docs.djangoproject.com/en/stable/topics/db/models/#proxy-models

CHAPTER 10

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

10.1 Types of Contributions

10.1.1 Report Bugs

Report bugs at https://github.com/NoNameItem/cool-django-auth-ldap/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

10.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

10.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

31

https://github.com/NoNameItem/cool-django-auth-ldap/issues

cool-django-auth-ldap Documentation, Release 2.0.0

10.1.4 Write Documentation

Cool Django Auth LDAP could always use more documentation, whether as part of the official Cool Django Auth
LDAP docs, in docstrings, or even on the web in blog posts, articles, and such.

10.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/NoNameItem/cool-django-auth-ldap/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

10.2 Get Started!

Ready to contribute? Here’s how to set up cool-django-auth-ldap for local development.

1. Fork the cool-django-auth-ldap repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/cool-django-auth-ldap.git

3. Install development requirements:

$ pip install requirements_dev.txt

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8, bandit and the tests, including testing
other Python versions with tox:

$ flake8 cool_django_auth_ldap tests
$ bandit -r .
$ python manage.py test --settings tests.settings

To get flake8 and bandit, just pip install it into your virtualenv (Should be installed uf you use require-
ments_dev.txt).

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

32 Chapter 10. Contributing

https://github.com/NoNameItem/cool-django-auth-ldap/issues

cool-django-auth-ldap Documentation, Release 2.0.0

10.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and update docs/ accrodingly.

3. The pull request should work for all supported python versions. Check https://travis-ci.org/NoNameItem/
cool-django-auth-ldap/pull_requests and make sure that the tests pass.

10.3. Pull Request Guidelines 33

https://travis-ci.org/NoNameItem/cool-django-auth-ldap/pull_requests
https://travis-ci.org/NoNameItem/cool-django-auth-ldap/pull_requests

cool-django-auth-ldap Documentation, Release 2.0.0

34 Chapter 10. Contributing

CHAPTER 11

Credits

11.1 Development Lead

• Artem Vasin <nonameitem@me.com>

11.2 Contributors

None yet. Why not be the first?

35

mailto:nonameitem@me.com

cool-django-auth-ldap Documentation, Release 2.0.0

36 Chapter 11. Credits

CHAPTER 12

License

MIT License

Copyright (c) 2019, Artem Vasin

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

37

cool-django-auth-ldap Documentation, Release 2.0.0

38 Chapter 12. License

Python Module Index

c
cool_django_auth_ldap.backend, 29
cool_django_auth_ldap.config, 27
cool_django_auth_ldap.models, 30

39

cool-django-auth-ldap Documentation, Release 2.0.0

40 Python Module Index

Index

Symbols
__init__() (cool_django_auth_ldap.config.ActiveDirectoryGroupType

method), 28
__init__() (cool_django_auth_ldap.config.GroupOfNamesType

method), 28
__init__() (cool_django_auth_ldap.config.GroupOfUniqueNamesType

method), 28
__init__() (cool_django_auth_ldap.config.LDAPGroupQuery

method), 29
__init__() (cool_django_auth_ldap.config.LDAPGroupType

method), 28
__init__() (cool_django_auth_ldap.config.LDAPSearch

method), 27
__init__() (cool_django_auth_ldap.config.LDAPSearchUnion

method), 27
__init__() (cool_django_auth_ldap.config.MemberDNGroupType

method), 28
__init__() (cool_django_auth_ldap.config.NestedActiveDirectoryGroupType

method), 29
__init__() (cool_django_auth_ldap.config.NestedGroupOfNamesType

method), 28
__init__() (cool_django_auth_ldap.config.NestedGroupOfUniqueNamesType

method), 28
__init__() (cool_django_auth_ldap.config.NestedMemberDNGroupType

method), 28
__init__() (cool_django_auth_ldap.config.NestedOrganizationalRoleGroupType

method), 29
__init__() (cool_django_auth_ldap.config.OrganizationalRoleGroupType

method), 29
__init__() (cool_django_auth_ldap.config.PosixGroupType

method), 28

A
ActiveDirectoryGroupType (class in

cool_django_auth_ldap.config), 28
AUTH_LDAP_ALWAYS_UPDATE_USER

setting, 23
AUTH_LDAP_AUTHORIZE_ALL_USERS

setting, 23

AUTH_LDAP_BIND_AS_AUTHENTICATING_USER
setting, 23

AUTH_LDAP_BIND_DN
setting, 23

AUTH_LDAP_BIND_PASSWORD
setting, 24

AUTH_LDAP_CACHE_TIMEOUT
setting, 24

AUTH_LDAP_CONNECTION_OPTIONS
setting, 24

AUTH_LDAP_DENY_GROUP
setting, 24

AUTH_LDAP_FIND_GROUP_PERMS
setting, 24

AUTH_LDAP_GLOBAL_OPTIONS
setting, 24

AUTH_LDAP_GROUP_SEARCH
setting, 24

AUTH_LDAP_GROUP_TYPE
setting, 25

AUTH_LDAP_MIRROR_GROUPS
setting, 25

AUTH_LDAP_MIRROR_GROUPS_EXCEPT
setting, 25

AUTH_LDAP_NO_NEW_USERS
setting, 25

AUTH_LDAP_PERMIT_EMPTY_PASSWORD
setting, 25

AUTH_LDAP_REQUIRE_GROUP
setting, 25

AUTH_LDAP_SERVER_URI
setting, 26

AUTH_LDAP_START_TLS
setting, 26

AUTH_LDAP_USE_GROUP_MAPPING
setting, 26

AUTH_LDAP_USER_ATTR_MAP
setting, 26

AUTH_LDAP_USER_ATTRLIST
setting, 26

41

cool-django-auth-ldap Documentation, Release 2.0.0

AUTH_LDAP_USER_DN_TEMPLATE
setting, 27

AUTH_LDAP_USER_FLAGS_BY_GROUP
setting, 27

AUTH_LDAP_USER_QUERY_FIELD
setting, 26

AUTH_LDAP_USER_SEARCH
setting, 27

authenticate_ldap_user()
(cool_django_auth_ldap.backend.LDAPBackend
method), 30

C
cool_django_auth_ldap.backend (module), 29
cool_django_auth_ldap.config (module), 27
cool_django_auth_ldap.models (module), 30

D
django_to_ldap_username()

(cool_django_auth_ldap.backend.LDAPBackend
method), 30

G
get_or_build_user()

(cool_django_auth_ldap.backend.LDAPBackend
method), 30

get_user_model() (cool_django_auth_ldap.backend.LDAPBackend
method), 30

GroupMapping (class in
cool_django_auth_ldap.models), 30

GroupOfNamesType (class in
cool_django_auth_ldap.config), 28

GroupOfUniqueNamesType (class in
cool_django_auth_ldap.config), 28

L
ldap_error (in module

cool_django_auth_ldap.backend), 29
ldap_to_django_username()

(cool_django_auth_ldap.backend.LDAPBackend
method), 30

LDAPBackend (class in
cool_django_auth_ldap.backend), 29

LDAPBackend.default_settings (in module
cool_django_auth_ldap.backend), 30

LDAPBackend.settings_prefix (in module
cool_django_auth_ldap.backend), 29

LDAPGroupQuery (class in
cool_django_auth_ldap.config), 29

LDAPGroupType (class in
cool_django_auth_ldap.config), 28

LDAPSearch (class in cool_django_auth_ldap.config),
27

LDAPSearchUnion (class in
cool_django_auth_ldap.config), 27

M
MemberDNGroupType (class in

cool_django_auth_ldap.config), 28

N
NestedActiveDirectoryGroupType (class in

cool_django_auth_ldap.config), 29
NestedGroupOfNamesType (class in

cool_django_auth_ldap.config), 28
NestedGroupOfUniqueNamesType (class in

cool_django_auth_ldap.config), 28
NestedMemberDNGroupType (class in

cool_django_auth_ldap.config), 28
NestedOrganizationalRoleGroupType (class

in cool_django_auth_ldap.config), 29

O
OrganizationalRoleGroupType (class in

cool_django_auth_ldap.config), 29

P
populate_user (in module

cool_django_auth_ldap.backend), 29
populate_user() (cool_django_auth_ldap.backend.LDAPBackend

method), 30
PosixGroupType (class in

cool_django_auth_ldap.config), 28

S
setting

AUTH_LDAP_ALWAYS_UPDATE_USER, 23
AUTH_LDAP_AUTHORIZE_ALL_USERS, 23
AUTH_LDAP_BIND_AS_AUTHENTICATING_USER,

23
AUTH_LDAP_BIND_DN, 23
AUTH_LDAP_BIND_PASSWORD, 24
AUTH_LDAP_CACHE_TIMEOUT, 24
AUTH_LDAP_CONNECTION_OPTIONS, 24
AUTH_LDAP_DENY_GROUP, 24
AUTH_LDAP_FIND_GROUP_PERMS, 24
AUTH_LDAP_GLOBAL_OPTIONS, 24
AUTH_LDAP_GROUP_SEARCH, 24
AUTH_LDAP_GROUP_TYPE, 25
AUTH_LDAP_MIRROR_GROUPS, 25
AUTH_LDAP_MIRROR_GROUPS_EXCEPT, 25
AUTH_LDAP_NO_NEW_USERS, 25
AUTH_LDAP_PERMIT_EMPTY_PASSWORD, 25
AUTH_LDAP_REQUIRE_GROUP, 25
AUTH_LDAP_SERVER_URI, 26
AUTH_LDAP_START_TLS, 26

42 Index

cool-django-auth-ldap Documentation, Release 2.0.0

AUTH_LDAP_USE_GROUP_MAPPING, 26
AUTH_LDAP_USER_ATTR_MAP, 26
AUTH_LDAP_USER_ATTRLIST, 26
AUTH_LDAP_USER_DN_TEMPLATE, 27
AUTH_LDAP_USER_FLAGS_BY_GROUP, 27
AUTH_LDAP_USER_QUERY_FIELD, 26
AUTH_LDAP_USER_SEARCH, 27

Index 43

	Installation
	Usage
	Authentication
	Server Config
	Search/Bind
	Direct Bind
	Customizing Authentication
	Notes

	User objects
	Populating Users
	Easy Attributes
	Updating Users
	Direct Attribute Access

	Permissions
	Using Groups Directly
	Group Mirroring
	Customizing group mapping
	Non-LDAP Users

	Multiple LDAP Configs
	Logging
	Performance
	Reference
	Settings
	Module Properties
	Configuration
	Backend
	Models

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines

	Credits
	Development Lead
	Contributors

	License
	Python Module Index
	Index

